Marcadores asociados al consumo de BCAA en adultos mayores

Por último, en el grupo IV, la disminución de la urea nos estaría demostrando una disminución del catabolismo proteico y por ende de la desintegración de proteínas, lo cual también se traduce en un aumento de la masa muscular. La disminución de la CPK, por otro lado, también se toma como referente de la disminución de la proteólisis.

CONCLUSIÓN: La célula muscular post suplementada optimizó su metabolismo anaerobio en un 85.30%, seguido por un mejoramiento en la masa muscular del orden del 65.14%. Se observó un 25% de mejora en la nutrición celular y en el perfil lipídico. El catabolismo proteico disminuyó un 13%, y la síntesis de proteínas se vio incrementada en un 52%.

RECOMENDACIONES:

Resultaría de sumo interés la adaptación de un método simple para determinar la concentración de aminoácidos ramificados (BCAA) en el suero de pacientes, antes, durante y post suplementación. Como así también conocer las variaciones de los mismos en la sobrecarga glucídica de los test de tolerancia.

Debido a la importancia de los niveles sanguíneos de aminoácidos ramificados (BCAA) en el anabolismo muscular, en la producción de energía, fundamentalmente en pacientes diabéticos; en la incorporación mayor o menor de aminoácidos aromáticos a través de la barrera hematoencefálica, asociado a insomnio, HTA, depresión, estrés, y en la inmunodepresión; todas entidades relacionadas con el envejecimiento, resultaría de sumo interés sanitario la incorporación de la determinación rutinaria de BCAA, para la correcta suplementación, que minimice o retarde la aparición de tales anomalías que deterioran la calidad de vida de nuestros ancianos.

Anexos – Marcadores asociados al consumo de BCAA en adultos mayores

Anexos – Marcadores asociados al consumo de BCAA en adultos mayores.pdf

BIBLIOGRAFÍA

·                     Herrerías, J., Días, A., & Jiménez, M. (2008). Tratado de hepatología. Tomo II. España. Ed. Universidad de Sevilla, 643-647.

·                     Pertusi, R., Dickerman, R. D., & McConathy, W. J. (2001). Evaluation of aminotransferase elevations in a bodybuilder using anabolic steroids: hepatitis or rhabdomyolysis?. Journal of the American Osteopathic Association, 101(7), 391-394.

·                     Pettersson, J., Hindorf, U., Persson, P., Bengtsson, T., Malmqvist, U., Werkström, V., & Ekelund, M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. British journal of clinical pharmacology, 65(2), 253-259.

·                     Sjorgren, M.H., & Schiff, E.R. (2007). Transaminase Levels and Vigorous Exercise. Gastroenterology & Hepatology, 3(12): 913-914.

·                     Tackett, J., Reynolds, A. S., & Dickerman, R. D. (2008). Enzyme elevations with muscle injury: know what to look for!. British journal of clinical pharmacology, 66(5), 725.

·                     «Branched chain amino acids chronic treatment and muscular exercise performance in athletes: a study through plasma acetyl-carnitine levels!,E. F. De Palo, Ed. Spinger Verlag

·                      «Branched-Chain Amino Acid-Enriched Nutritional Support in Surgical and Cancer Patients», Haroon A. Choudry, Ming Pan, Anne M. Karinch, and Wiley W. Souba; J. Nutr. 136: 314S–318S, 2006

·                     «Análisis y control del rendimiento deportivo», Atko Viru, Mehis Viru, Editorial Paidotribo, 2003

·                      «Protein And Amino Acid Metabolism During And After Exercise And The Effects Of Nutrition», Michael J. Rennie, Annual Review of Nutrition, Vol. 20: 457-483 (Volumen de la publicación de julio de 2000)

·                     «Amino acids transport in intestine». Stevens BR.; Kilberg MS and Haussinger D, editors. Mammalian amino acid transport. New York: Plenum; 1992. p. 149–63.

·                     «Branched-chained amino acid metabolism». Harper AE, Miller RH, Block KP.; Annu Rev Nutr. 1984;4:409–54.

·                      «Branched-chain amino acid oxidation by isolated rat tissue preparations». Shinnick FL, Harper AE.; Biochim Biophys Acta. 1976;437:477–86.

·                     «Partial purification and properties of branchedchain 2-oxo acid dehydrogenase of ox liver». Parker PJ, Randle PJ.; Biochem J. 1978;171:751–7.

·                     Lombardo YB, Thamotharan M, Bawani SZ, Paul HS, Adibi SA. Posttranscriptional alterations in protein masses of hepatic branched-chain keto acid dehydrogenase and its associated kinase in diabetes. Proc. Assoc. Am. Physicians. 1998;110:40–9.

·                     «Overtraining and the BCAA hypothesis», Gastmann and Uwe; Medicine & Science in Sports & Exercise. 30(7):1173-1178, July 1998.

·                      «Efficacy of the Branched-Chain Amino Acids in the Treatment of Tardive Dyskinesia in Men», Mary Ann Richardson, Am J Psychiatry 2003; 160:1117–1124

·                      «Ideal Ratio of Branched Chain Amino Acids (BCAA) in Early-Weaned Piglets», Rajavel Elango, Advances in Pork Production (2002) Volume 13, Abstract #18

·                      «Branched-chain amino acids for growing cattle limit-fed soybean hull-based diets», C. A. Löest; J. Anim. Sci. 2001. 79:2

·                      «Modificaciones Plasmáticas de Aminoácidos Tras la Ingesta Aislada de Aminoácidos Ramificados O De Un Compuesto Proteico Suplementado Con Dichos Aminoácidos», [1]

·                      «Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise.» Blomstrand E, Hassmen P, Ek S, Ekblom B, Newsholme EA. Acta Physiol Scand. 159(1):41-9.

·                      «Branched-chain amino acid supplementation during bed rest: effect on recovery», T. P. Stein, J Appl Physiol 94: 1345–1

·                     Baird MF, Graham SM, Baker JS & Bickerstaff GF. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab; 2012:960363.

·                     Dickerman, R. D., Pertusi, R. M., Zachariah, N. Y., Dufour, D. R., & McConathy, W. J. (1999). Anabolic steroid-induced hepatotoxicity: is it overstated?. Clinical Journal of Sport Medicine, 9(1), 34-39.

·                     Fernstrom JD. Branched-chain amino acids and brain function. J Nutr. 2005;135(6 Suppl):1539S-46S

·                     Platell C, Kong SE, McCauley R, et al. Branched-chain amino acids. J Gastroenterol Hepatol. 2000;15(7):706-17

·                     Shimomura Y, Honda T, Shiraki M, et al. Branched-chain amino acid catabolism in exercise and liver disease. J Nutr. 2006;136(1 Suppl):250S-3S

·                     Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr. 2005;135(6 Suppl):1553S-6S

·                     Layman DK, Walker DA. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr. 2006;136(1 Suppl):319S-23S

·                     Blomstrand E, Eliasson J, Karlsson HK, et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S-73S

·                     De Bandt JP, Cynober L. Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr. 2006;136(1 Suppl):308S-13S

·                     van Dam AC. Das sportliche Training hochqualifizierter Fechterinnen und Fechter aus der Sicht physischer und psychischer Leistungsfaktoren, Dissertation. Graz: Karl-Franzens-Universität; 1981

·                     Suryawan A, Hawes JW, Harris RA, et al. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68(1):72-81

·                     Fernstrom JD. Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J Nutr Biochem. 1990;1(10):508-17

·                     James JH, Ziparo V, Jeppsson B, et al. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy. Lancet. 1979;2(8146):772-5

·                     Charlton M. Branched-chain amino acid enriched supplements as therapy for liver disease. J Nutr. 2006;136(1 Suppl):295S-8S

·                     Calder PC. Branched-chain amino acids and immunity. J Nutr. 2006;136(1 Suppl):288S-93S

·                     Davis JM, Alderson NL, Welsh RS. Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr. 2000;72(2 Suppl):573S-8S

·                     Newsholme EA, Blomstrand E. Branched-chain amino acids and central fatigue. J Nutr. 2006;136(1 Suppl):274S-6S

·                     Richardson MA, Bevans ML, Read LL, et al. Efficacy of the branched-chain amino acids in the treatment of tardive dyskinesia in men. Am J Psychiatry. 2003;160(6):1117-24

·                     Pietz J, Kreis R, Rupp A, et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169-78

·                     Berry HK, Brunner RL, Hunt MM, et al. Valine, isoleucine, and leucine. A new treatment for phenylketonuria. Am J Dis Child. 1990;144(5):539-43

·                     Mascarenhas R, Mobarhan S. New support for branched-chain amino acid supplementation in advanced hepatic failure. Nutr Rev. 2004;62(1):33-8

·                     Baker DH. Tolerance for branched-chain amino acids in experimental animals and humans. J Nutr. 2005;135(6 Suppl):1585S-90S.

·                     Amri H et al. Ex vivo regulation of adrenal cortical cell steroid and protein synthesis, in response to adrenocorticotropic hormone stimulation, by the Ginkgo biloba extract EGb 761 and isolated ginkgolide B.Endocrinology (1997);138(12):5415-26.

·                     – Brillon DJ et al. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol (1995);268:E501-13.

·                     Fry AC et al. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol. (1998);85(6):2352-9.

·                      Hickson RC et al. Protective effect of glutamine from glucocorticoid-induced muscle atrophy occurs without alterations in circulating insulin-like growth factor (IGF)-I and IGF-binding protein levels. Proc Soc Exp Biol Med. (1997);216(1):65-71.

·                     Jacks DE et al. Effect of exercise at three exercise intensities on salivary cortisol. J Strength Cond Res 2002 May;16(2):286-9

·                     Kelley DE, et al. Energy restriction and immunocompetence in overweight women. Nutrition Research (1998);18.2:159-169.

·                     Monteleone P et al. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology (1990); 52(3):243-8

·                     Neary JP et al. Relationship between serum, saliva and urinary cortisol and its implication during recovery from training. J Sci Med Sport (2002); 5(2):108-14.

Peters EM et al. Vitamin C supplementation attenuates the increases in circulating cortisol, adrenaline and anti-inflammatory polypeptides following ultramarathon running. Int J Sports Med 2001;22(7):537-43.

·                     Rowbottom DG, et al. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med (1996); 21.2: 80-97.

Sapse AT. Cortisol, high cortisol diseases and anti-cortisol therapy. Psychoneuroendocrinology (1997); 22 Suppl 1:S3-10. Review.

·                     Simmons NE, et al. Increased proteolysis: an effect of increases in plasma cortisol within the physiological range. J Clin Invest (1984);73:412-420.

·                     Tarpenning KM et al. Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. Can J Appl Physiol 2001;26 Suppl:S45-55.

·                     Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress.

J Psychosom Res. (2002);53(4):865-71

·                     Venkatraman JT et al. Effects of dietary fat and endurance exercise on plasma cortisol, prostaglandin E2, interferon-gamma and lipid peroxides in runners. J Am Coll Nutr 2001;20(5):529-36.

·                     Williams AG et al. Effects of resistance exercise volume and nutritional supplementation on anabolic and catabolic hormones. Eur J Appl Physiol 2002;86(4):315-21.

·                     Antropométrica. Kevin Norton. Capítulo 12: Antropometría y salud Pg 347.ç

·                     Blackburn G, Wollner S, Bistrian B. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nut. 2012;31:462e-8e.

·                     Hoffer L. Protein requirement in critical illness. Appl Physiol Nutr Metab 2016. In press 19. Marian M, Roberts S. Carbohydrate metabolism. A comparison

·                     Patiño JF, Pimiento S, Vergara A, Savino P, Rodriguez M, Escallón J: Hypocaloric support in the critical ill. World J Surgery. 1999;23:553

·                     Arabi Y, Aldawood A, Haddad S, Al-Dorzi H, Tamim H, Jones G, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015;372:2398-408.

·                     Metabolismo y nutrición del paciente en estado crítico Patricia Savino1 , José Félix Patiño. Rev Colomb Cir. 2016;31:108-27

Salir de la versión móvil